求导时dy和dp分别代表什么
d就是积分里面的d的意思,表示极小一段,dY意思就是Y中极小一段,常用于积分中。
dy表示函数y(x)在x点上的微小变化量,可以理解为y的微分。dx表示自变量x在某一点上的微小变化量,可以理解为x的微分。这两个微小变化量的比值dy/dx代表了函数y(x)在该点上的斜率,即导数。
d/dx就是关于x求导,d/dy就是关于y求导,d是符号,是求微分的符号,比上dx就是求导数的符号,而且是关于x求导数。
导数 dy/dx = cosx dy/dx是y对x的导数,dy是y的微分。y对x导数就是y的微分除以x的微分,因此导数就是微分之商,也称为微商,两个概念是不同的。
高等数学…求导和求极限有哪些区别?详细一些…谢谢
1、导数的本质是通过极限的概念对函数进行局部的线性逼近。极限:“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。
2、求导:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。
3、导数与极限的关系:极限只是一个数,x趋向于x0的极限=f(x0)。而导数则是瞬时变化率,是函数在该点x0的斜率,导数比极限多了一个表达“过程”的部分。
4、求导实际上一种特殊情况下的极限,因为:f(x)=lim(t→0)[f(x+t)-f(x)]/t.而极限,是函数f(x)在x趋近某个特定值时,函数值也靠近某个值,或者无限接近直角坐标系两坐标轴无穷远处。
5、极限是导数的基础,从某种意义上说,导数的本质就是一种极限,当自变量的增量趋于零时,函数值的增量与自变量的增量的比值的极限就是导数。这个极限反映的是函数的变化趋势,刻画的是函数的变化速度。
6、首先函数在一点处的导数和在该点处导函数的极限是两个不同的概念,前者是直接用导数定义求得,后者是利用求导公式求出导函数的表达式后再求该点处的极限,两者完全可以不相等。
4是求4的导数吗
1、复合函数求导公式(“链式法则”)求一个基本初等函数的导数,只要代入“基本初等函数的导数公式”即可。对于基本初等函数之外的函数如“y=sin(2x)”的导数,则要用到复合函数求导法则(又称“链式法则”)。
2、乘法法则,[f(x)*g(x)]=f(x)*g(x)+g(x)*f(x);除法法则,[f(x)/g(x)]=[f(x)*g(x)-g(x)*f(x)]/g(x)^2。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
3、X的导数等于4。公式就是4的X的0次方。还是比较简单的。
4、隐函数求导公式:对于某些函数关系无法显式地表示的情况,可以使用隐函数求导公式来计算导数。隐函数求导公式通过对等式两边同时求导,利用导数的定义和基本运算法则来推导出隐函数的导数表达式。
5、导数的四则运算法则是(u+v)=u+v,(u-v)=u-v,(uv)=uv+uv,(u÷v)=(uv-uv)÷v^2。导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。