什么叫有理数,什么叫无理数
1、无理数:不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
2、有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
3、有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
4、有理数的特征:有理数的小数部分是有限或为无限循环的数。无理数的特征:无理数的小数部分是无限不循环的数。两者的实质不同:有理数的实质:有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
5、有理数:有理数分为正有理数,负有理数,0。有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,只要是无限循环小数的都叫有理数。如:12121212121212…… 无理数:无限不循环小数。
6、实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。虚数 在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。
有理数和无理数的区别是什么
1、有理数和无理数的区别为:小数形式不同,整数之比不同,位数不同等。小数形式不同 把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数。
2、(1)性质的区别:有理数是两个整数的比,总能写成整数、有限小数或无限循环小数。无理数不能写成两个整数之比,是无限不循环小数。(2)结构的区别:有理数是整数和分数的统称。无理数是所有不是有理数的实数。
3、有理数和无理数分别指的是:有理数:有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
4、有理数和无理数定义有3点不同:两者的含义不同:有理数的含义:数学中,有理数是一个整数a和一个正整数b的比,例如3/8,通常为a/b,0也是有理数。无理数的含义:在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。
无理数和有理数的区别?
有理数和无理数的区别为:小数形式不同,整数之比不同,位数不同等。小数形式不同 把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数。
有理数和无理数分别指的是:有理数:有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
有理数和无理数定义有3点不同:两者的含义不同:有理数的含义:数学中,有理数是一个整数a和一个正整数b的比,例如3/8,通常为a/b,0也是有理数。无理数的含义:在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。
性质不同:有理数是整数和分数的集合,整数也可看做是分母为一的分数。无理数也称为无限不循环小数,不能写作两整数之比。特点不同:有理数和无理数都能写成小数形式,但是有理数可以写为有限小数和无限循环小数,而无理数只能写为无限不循环小数。有理数可以写为整数之比,而无理数不能。
简单来讲,能够用分数表达得数就是有理数,不能用分数表达的数就是无理数。
有理数和无理数分别指什么?
有理数和无理数分别指的是:有理数:有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
无限不循环小数和开根开不尽的数叫无理数 整数和分数统称为有理数 包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。这一定义在数的十进制和其他进位制(如二进制)下都适用。数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。
在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。
什么是有理数和无理数 有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
有理数和无理数定义有3点不同:两者的含义不同:有理数的含义:数学中,有理数是一个整数a和一个正整数b的比,例如3/8,通常为a/b,0也是有理数。无理数的含义:在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。
什么是复数、有理数、无理数?
1、在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。
2、复数 把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。实数 实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。
3、无理数,即非有理数之实数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。由实数部分和虚数部分所组成的数。实数部分可以是零。如果虚数部分也允许是零,那么实数就是复数的子集。列如形为2+3i,4+5i的数都是复数。
4、有理数:有理数分为正有理数,负有理数,0。有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,只要是无限循环小数的都叫有理数。如:12121212121212…… 无理数:无限不循环小数。
5、有理数:我们把能够写成分数形式的数叫做有理数。整数和分数都可以写成分数的形式,因此整数、分数、有限小数和无限循环小数都是有理数。举个例子:2,1/10,0.79,5.323232...。无理数:无限不循环小数叫无理数。